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microbiota, play an important role in the pathophysiol-
ogy of Crohn’s disease (CD) [1]. CD has been attributed 
to complex mechanisms triggering an dysregulated immune 
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Abstract
Background and aims Exclusive enteral nutrition is recommended as a first-line treatment in active pediatric Crohn’s Dis-
ease, but its mechanism of action is still not clear. We aimed to assess alterations in the metabolic profile of newly diagnosed 
pediatric Crohn’s Disease patients before and during exclusive enteral nutrition therapy.
Methods Plasma samples from 14 pediatric Crohn’s Disease patients before and after 3–4 weeks on exclusive enteral nutri-
tion were analyzed using mass spectrometry. T-test, fold change and orthogonal partial least squares discriminant analy-
sis were used for mining significant features. Correlation analysis was performed between the annotated features and the 
weighted pediatric Crohn’s disease activity index using Pearson r distance.
Results Among the 13 compounds which decreased during exclusive enteral nutrition, most are related to diet, while one 
is a bacterial metabolite, Bacteriohopane-32,33,34,35-tetrol. The phosphatidic acid metabolite PA(15:1/18:0) was signifi-
cantly reduced and correlated with the weighted pediatric Crohn’s disease activity index. Lipids increased during exclu-
sive enteral nutrition therapy included phosphatidylethanolamines; PE(24:1/24:1), PE(17:2/20:2) and one lactosylceramide; 
LacCer(d18:1/14:0).
Conclusion Food additives and other phytochemicals were the major metabolites, which decreased following the exclusion 
of a regular diet during exclusive enteral nutrition. An alteration in bacterial biomarkers may reflect changes in intestinal 
microbiota composition and metabolism. Thus, metabolomics provides an opportunity to characterize the molecular mecha-
nisms of dietary factors triggering Crohn’s Disease activity, and the mechanisms of action of exclusive enteral nutrition, 
thereby providing the basis for the development and evaluation of improved intervention strategies for prevention and 
treatment.
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response to commensal gut microbiota [2]. Exclusive enteral 
nutrition (EEN) is an established therapy to induce remis-
sion in pediatric CD patients with efficacy in up to 80% of 
individuals [3], and it is recommended as first-line therapy 
in European guidelines [4–6]. A meta-analysis based on 18 
studies concluded that there is no significant difference in 
efficacy using EEN or corticosteroids treatment to induce 
remission in pediatric CD, however, EEN seems to be supe-
rior in promoting mucosal healing and faster reduction of 
PCDAI (pediatric Chrohn’s disease activity index) [7]. The 
benefits of using EEN in pediatric patients extend beyond 
promoting mucosal healing, contributing to the improve-
ment of nutritional status [8], bone metabolism, and muscle 
mass [9]. However, the mechanism of EEN action is still 
unclear. Several studies have focused on investigating how 
EEN may affect the microbiome, and most report an over-
all decrease in microbiome diversity during EEN therapy 
[10–17]. However, the use of different techniques to assess 
taxonomic shifts and the high diversity of microorganisms 
present in the human microbiota and its interindividual 
variation generates heterogenous results, especially at tax-
onomic resolution lower than phylum-level [18]. In addi-
tion to changes in microbiota composition, CD-associated 
dysbiosis affects microbial metabolic functions. Previous 
research demonstrated alterations in microbial functions 
with a shift in genetic abundance related to oxidative stress 
pathways, carbohydrate metabolism and amino acid biosyn-
thesis, which was considered more disturbed than microbi-
ota composition shifts [19]. In another observational study, 
the authors reported a reduction in metabolic activity of the 
intestinal microbiome during enteral feeding for two weeks, 
based on analyzing exhaled breath and fecal samples using 
gas chromatography/mass spectrometry [20]. Recently, 
Diederen et al. reported a reduction in microbiome diversity 
and changes in the fecal metabolome during EEN in pediat-
ric CD patients, with alterations in amino acids, cadaverine, 
trimethylamine, and bile acids levels [21].

Over the past years, untargeted metabolomics using mass 
spectrometry has been applied as powerful tool for identi-
fication and tracking of biomarkers which help in under-
standing the system biology and treatment outcomes [22]. 
Metabolomics have provided new insights into metabolic 
alterations in CD patients versus healthy subjects using both 
serum and fecal samples [23,24]. However, only few studies 
were performed on pediatric population [25] and could not 
detect the differences induced by EEN therapy, which is one 
of the points of strength of our study.

2 Methods

2.1 Plasma samples

Plasma samples from 14 pediatric CD patients (age 
(mean ± SD) 13.5 ± 2.2 years, 8 boys, 12 newly diagnosed), 
before and after 25 ± 5 days on EEN treatment were ana-
lyzed. Thirteen patients received Modulen® IBD (Nestlé 
Nutrition) and one patient was treated with Neocate Junior® 
(Nutricia). Samples were obtained from a previously pub-
lished study [15].

The sample preparation procedure was previously 
described 26. Briefly, after samples were thawed on ice, 
100 µL of plasma were precipitated with the addition of 900 
µL of ice-cold high-performance liquid chromatography 
(HPLC)-grade methanol in a 1.5 mL Eppendorf tube, vor-
texed and rested at -20 °C for 30 min. The tubes were then 
centrifuged, and the supernatant was filtered in a polytetra-
fluoroethylene (PTFE) 45 μm 96-well filter plate. Samples 
were kept at − 80 °C before analysis. Quality control (QC) 
samples were created by pooling aliquots from the study 
samples and used to create an inclusion list in the method 
development and to ensure reproducibility in the analysis.

2.2 LC-QTOF-MS(/MS)

The analysis was conducted on a 1290 Infinity II HPLC sys-
tem using a Poroshell 120 EC-C18 column (2.1 × 150 mm, 
2.7 μm) coupled to a 6545 Q-TOF (both from Agilent, Santa 
Clara, CA), as previously described [26]. Briefly, 6 µL of 
the quality control sample were injected in triplicate in full 
scan (MS) acquisition mode. Data from the MS experiment 
was then used to create an acquisition list to be used in the 
auto MS/MS acquisition mode. The analysis was performed 
with the instrument in the 2 GHz, extended dynamic range 
in the negative ionization (NEG) mode using an Agilent 
Jet Stream (AJS) electrospray ionization (ESI) ion source. 
Operation parameters were set as follows: capillary volt-
age: − 4000 V; nozzle voltage − 500 V; nebulizer pressure: 
40 psi; gas temperature: 290 °C; sheath gas flow: 12 L/min; 
sheath gas temperature: 380 °C; fragmentor voltage: 170 V; 
and skimmer voltage: 65 V. The instrument was operated 
using MassHunter Acquisition B.09.00 software (Agilent). 
Chromatographic separation was achieved in 16 min run 
time using a mobile phase A, water (0.1% formic acid); and 
B, methanol (0.1% formic acid) at a flow rate of 0.4 mL/
min. Gradient elution was performed with an initial mixture 
of 5% B and 95% A, then increased to 60% B throughout 
4 min, to 99% B at 12 min, held until 14 min, returned to 5% 
B at 15.1 min, and held to 16 min.
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2.2.1 LC-QTOF-MS analysis

The full-scan analysis was performed in triplicate using the 
QC samples acquired over the range of 100 to 1050 m/z in 
the NEG mode to create an inclusion list to further create the 
auto MS/MS acquisition mode. Data were extracted using 
batch recursive feature extraction algorithm in MassHunter 
Profinder B.08.00 software (Agilent) and after evaluation 
exported as CEF (Cluster Exchange Format) files. The fea-
tures were aligned on Mass Profiler software (Agilent) using 
retention time (RT) tolerance of up to 0.3 min and mass tol-
erance of ± 15 ppm. Features with a 100% occurrence in the 
replicates were used to create a target MS/MS inclusion list.

2.2.2 LC-QTOF-MS/MS analysis

Analysis of the study samples was performed using data-
dependent acquisition (DDA) (auto MS/MS) acquisition 
mode using the inclusion list as preferred ions for fragmen-
tation, using delta m/z of 15 ppm and delta retention time 
(RT) of 0.15 min. The collision cell operates with fixed col-
lision energies of 10, 20, and 40 eV using nitrogen (N2) as 
the collision gas. The acquisition parameters were set as fol-
lows: acquisition mass range: 100 to 1050 m/z at 4 spectra/s 
in the MS, and 50–800 m/z at 3 spectra/s in the time of flight 
(TOF).

2.3 Data processing and statistical analysis

Samples from 14 pediatric CD patients, from before and 
after at least 19 days of EEN were analyzed pairwise. Data 
were processed as described in our previous work [26]. 
Briefly, quantile normalization was applied on raw data for 
features filtered based on QC procedure, where features 
with less than 100% occurrence between the QC and with 
coefficient of variance higher than 25% were excluded. 
Principal component analysis was used to perform a QC on 
samples to exclude any outlier by visual inspection. Identi-
fication of features was performed by library search using 
Mass Hunter METLIN Personal Compound Database and 
Library (PCDL) (Agilent Technologies, Santa Clara, USA) 
at MS/MS level.

Then, Principal component analysis (PCA) was used to 
evaluate reproducibility across measurements by checking 
the location of the QC samples on the PCA plots. After qual-
ity control, annotated compounds were used in the statisti-
cal analysis using MetaboAnalyst 4.0 [27]. Fold change and 
t-test, using false discovery rate (FDR) to correct for mul-
tiple testing, were performed to detect significant changes 
in certain metabolites between the pairwise samples over 
time. Orthogonal partial least squares discriminant analysis 
(OPLS-DA) model was built, and significant metabolites 

related to the differences between the pairwise samples were 
identified using the S-plot, comprising the combination of 
magnitude (covariance), with the effect and reliability (cor-
relation) for the model variables concerning model compo-
nent scores. Correlation analysis was performed using the 
difference between the values of the annotated features and 
the weighted pediatric Crohn’s disease activity index wPC-
DAI [28] scores (after EEN - before EEN) using Pearson r 
distance measurement.

3 Results

An average of 8000 features were detected per sample from 
the total of samples analyzed, 6000–7000 features had for-
mulas generated and 3000–4000 were putatively annotated. 
However, after a strict QC, 318 features were filtered with 
match score higher than 70 and are shown in the supple-
mentary material containing their respective retention time 
and m/z (S1). PCA performed on those data showed cluster-
ing of all QCs together on obtained PCA models (Data not 
shown) which indicates the system’s stability and consistent 
performance throughout the analysis.

A volcano plot (Fig. 1) was built presenting the com-
pounds filtered by pvalues and fold change (FC) and shows 
eight compounds found significant on the t-test with a 
p-value < 0.05 (Table 1). Albeit, after FDR correction, only 
4 features remained significant at p < 0.05. Considering 
FC, with arbitrary cut-off of 1.3, two compounds (Bacte-
riohopane-32,33,34,35-tetrol, and PA(15:1/18:0)) were fil-
tered as significant. Orthogonal PLS-DA model provided 
complete separation between the samples before and after 
EEN treatment. Figure 2 depicts the scores plot and the 
s-plot with features of importance showing the most signifi-
cant compounds ordered by the covariance loading values 
obtained using an arbitrary cut-off value of 3.6, resulting in 
10 annotated compounds with increased concentration after 
treatment and 13 compounds which decreased in concentra-
tion (Table 2).

As previously reported [15], disease activity measured by 
wPCDAI decreased significantly (p < 0.001) over the course 
of EEN treatment. The average score (± SD) was 48.8 ± 18.6 
before start of EEN and decreased to 16.4 ± 10.1 after 3–4 
weeks on EEN therapy. wPCDAI was developed as a score 
to stratify the severity of Crohn’s disease in pediatric patients 
with ranges between 0 to 100 with higher scores signifying 
more active disease. A score of < 12,5 is consistent remis-
sion, > 40 indicates moderate disease, and > 57,5 severe 
disease. A 17.5-point decrease in PCDAI is taken as evi-
dence of small improvement and 37,5 as moderate improve-
ment [28]. Correlation analysis was performed between the 
annotated compounds and the wPCDAI scores. The most 
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4 Discussion

The use of EEN therapy clearly shows an impact on the 
plasma metabolome, with complete separation by orthog-
onal PLS-DA. Some features with a higher importance in 
the model appear related to the exclusion of a regular diet 
and they decreased most during EEN treatment. The com-
pound annotated as Theophylline, for instance, presented 
the same match score as Theobromine, natural methylx-
anthines present in chocolate derivatives and beverages 
that are highly consumed by children and teenagers [29]. 
Other compounds related to diet that decreased during EEN 
therapy included: the food additive (+/-)-3-[(2-Methyl-
3-furyl)thio]-2-Butanone [30]; organic compounds found in 
fruits: 3-(3,4-Dihydroxyphenyl)-1-Propanol 3’-Glucoside 
[31] and 2-Phenylethyl beta-D-glucopyranoside [32]; in 
tomatoes: N-Nitrosotomatidine [33] and other phytochemi-
cals naturally occurring in fats and oils, green vegetables, 
herbs, and spices: (Methoxysulfinyl) Pentasulfide [34] and 
4-(3-Hydroxy-7-phenyl-6-heptenyl)-1,2-benzenediol [35]. 
Violacene is a polyhalogenated monocyclic monoterpene 
[36] which is produced by diverse genera of bacterial strains 
which were isolated from various marine to freshwater and 
soil environments as well as marine algae and could prob-
ably reflect cessation of food intake [37]. A slight reduction 
shift was detected in Prostaglandin D2-1-glyceryl ester, a 
bioactive lipid involved in the endocannabinoid system with 
potential anti-inflammatory properties in vivo [38].

The compounds found elevated during EEN treatment 
in the multivariate analysis present two features annotated 

significant compounds with R values < -0.5 for the negative 
correlation and > 0.3 for the positive are shown in Fig. 3. 
The following compounds were found negatively correlated 
with wPCDAI scores: 1-Phosphatidyl-1D-myo-inositol 
3-phosphate; Erythromycin ethylsuccinate; 1,2,4,5,7-Penta-
thiocane; dTDP / Thymidine 5’-diphosphate; PS(22:4/19:0); 
Medicagenic acid beta-maltoside; Phe Arg Val; Anisole; and 
PS(18:2/21:0) with R values of -0.71, -0.67, -0.66, -0.64, 
-0.58, -0.55, -0.53, -0.52, -0.52, respectively). Conversely, 
we filtered 9 compounds positively correlated with wPC-
DAI: CDP-DG(16:0/20:4), 1,2-bis(Chloromethoxy)ethane; 
Theophylline/Theobromine; LMST03020510; Navalioside; 
2α-Fluoro-19-nor-22-oxa-1α,25-dihydroxyvitamin D3; 
PA(15:1/18:0); 3-Acetylthiophene; and LMST01080090 ( 
R = 0.30, 0.31, 0.35, 0.35, 0.35, 0.43, 0.50, 0.54, and 0.67, 
respectively).

Table 1 Results of univariate analysis using t-test
Feature Change 

post-EEN 
therapy

p-value p-value
(FDR)

Bacteriohopane-32,33,34,35-tetrol - * *
Cohibin B - * *
PA(15:1/18:0) - * *
Theophylline/Theobromine - * na
4-Sulfocatechol - * na
PS(P-16:0/22:6) - * na
Chatenaytrienin 2 - * *
1,3-Benzenedisulfonamide + * na

Fig. 1 Volcano plot with log2 fold change (FC) in the x-axis and –
log10 of p values on the y axis. The lines indicate FC > 1.3. Box whis-
ker plot showing the interquartile range of the significant metabolites 

before (red) and after EEN treatment (green)
 * Entities significant after FDR correction for multiple testing
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(PE-Cer): PE-Cer(d16:2/23:0). PE are estimated to com-
prise 15–25% of the total lipid content in mammalian cells 
and exert remarkable bio-activities [39]. In Gram-negative 
bacteria, PE comprises around 75% of the phospholipid cell 
envelop and are dynamic key compounds modulating meta-
bolic activities [40].

Other elevated compounds were 3,5-Diiodo-L-tyro-
sine, involved in thyroid hormone synthesis [41] and 
LacCer(d18:1/14:0). Lactosylceramide (LacCer) was previ-
ously related with CD, however the role in the pathogenesis 
was unclear [42]. Another study indicated the potential of 
Lactosylceramide as a potential biomarker of inflammatory 
bowel disease in children [43]. LacCer is highly expressed 
in phagocytes and epithelial cells and may play an essential 
role in the human innate immune system, binding patho-
genic microorganisms [44]. Furfuryl thioacetate, a natu-
rally occurring aroma compound [45], and Furfuryl B, a 
secondary metabolite with antimicrobial activity produced 
by many plants source of edible vegetable oils [46] were 
also elevated. Two chemical entities appear with weighing 
importance in the OPLS-DA model, 2-Methylpropanoyl 
phosphate and 1,3-Benzenedisulfonamide; however, nei-
ther of them has been previously reported in the human 
metabolome. Interestingly, compounds containing the 

as phosphatidylethanolamine (PE), PE(24:1/24:1), and 
PE(17:2/20:2) and one ceramide phosphoethanolamine 

Table 2 List of the significant compounds using orthogonal PLS-DA 
ordered by the covariance loading values which increased or decreased 
post EEN therapy
Increased after EEN therapy Decreased after EEN therapy
1,3-Benzenedisulfonamide PA(15:1/18:0
2-Methylpropanoyl 
phosphate

Theophylline/Theobromine

LacCer(d18:1/14:0) Bacteriohopane-32,33,34,35-tetrol
Furfuryl thioacetate (+/-)-3-[(2-methyl-3-furyl)

thio]-2-butanone
Brassicanal B 3-(3,4-Dihydroxyphenyl)-1-Propanol 

3’-Glucoside
PE(17:2/20:2) Amino (methoxysulfinyl) pentasulfide
PE(24:1/24:1) N-Nitrosotomatidine
N-[(3a,5b,7b)-7-hydroxy-
24-oxo-3-(sulfoxy)
cholan-24-yl]-Glycine

(Z)-4-Hydroxyphenylacetaldehyde-
oxime

PE-Cer(d16:2/23:0) 2-Phenylethyl 
beta-D-glucopyranoside

L-3,5-Diiodotyrosine Violacene
Cohibin B
4-(3-Hydroxy-7-phenyl-6-heptenyl)-
1,2-benzenediol
Prostaglandin D2-1-glyceryl ester)

Fig. 2 Scores plot and Splot from the Ortogonal partial least square discriminant analysis (OPLS DA) (Left) and bar chart with of the most impor-
tant features in the model with cut off of 3.6
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EEN treatment. Both compounds belong to the class of 
organic compounds known as annonaceous acetogenins, a 
class of natural compounds with a wide variety of biological 
activities and are powerful inhibitors of complex I (NADH : 
ubiquinone oxidoreductase) in mammalian and insect mito-
chondrial electron transport systems [53].

The most important metabolite in the OPLS-DA model 
was PA(15:1/18:0), also found significantly decreased in 
the t-test and fold change. PA is the simplest class of glyc-
erophospholipids (GPL) present in virtually all organisms, 
from bacteria to higher plants. It is an intermediate in lipid 
membrane synthesis and storage and is also involved in 
many eukaryotic processes. Besides, PA influences mem-
brane structure and interacts with diverse proteins due to its 
unique physicochemical properties in comparison to other 
GPL, thus acting as a lipid mediator in various signaling and 
cellular processes 54.

We correlated the metabolome with the patients’ wPC-
DAI scores to investigate what metabolites were associated 
with clinical improvement. The results show two metabo-
lites in common with the list of features related to EEN 
treatment. There was a parallel decrease of PA(15:1/18:0), 

sulphonamide moiety present potential biological activities, 
such as carbonic anhydrase and COX-1/2 inhibition, as well 
as anti-inflammatory, and antitumor activities [47].

Some of the features with high importance in the multi-
variate model were found significant in the t-test and fold 
change, concomitantly. Bacteriohopane-32,33,34,35-tetrol, 
a bacterial metabolite, and biomarker of Burkholderia, 
Pseudomonas, and Ralstonia spp [48[, decreased during 
treatment. Burkholderia spp is a Proteobacteria known for 
causing dysfunction of GALT and gut microbiota in IBD 
[49], with the potential to invade intestinal epithelial cells 
[50]. An increase in the abundance of proteobacteria has 
been reported in IBD patients [51], in active or aggres-
sive Crohn’s disease [52]. A decrease of Bacteriohopane-
32,33,34,35-tetrol concentration after EEN treatment may 
indicate an effect on the gut microbiome with a decrease 
in Burkholderia and/or Pseudomonas population. Thus, 
the presence of elevated PE in plasma could be a marker 
of gram-negative bacterial cell membranes that underwent 
cell death.

Two other features annotated as Cohibin B and Chat-
enaytrienin 2 were significantly (p < 0.05) decreased with 

Fig. 3 Bar chart showing features correlated with wPCDAI scores with Pearson correlation coefficient cut off of -0.5 for the negatively correlated 
features and 0.3 for the positive
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